Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Conserv Biol ; 37(4): e14087, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36919472

RESUMO

Refugia-based conservation offers long-term effectiveness and minimize uncertainty on strategies for climate change adaptation. We used distribution modelling to identify climate change refugia for 617 terrestrial mammals and to quantify the role of protected areas (PAs) in providing refugia across South America. To do so, we compared species potential distribution across different scenarios of climate change, highlighting those regions likely to retain suitable climatic conditions by year 2090, and explored the proportion of refugia inside PAs. Moist tropical forests in high-elevation areas with complex topography concentrated the highest local diversity of species refugia, although regionally important refugia centers occurred elsewhere. Andean-Amazon forests contained climate change refugia for more than half of the continental species' pool and for up to 87 species locally (17 × 17 km2 grid cell). The highlands of the southern Atlantic Forest also included megadiverse refugia for up to 76 species per cell. Almost half of the species that may find refugia in the Atlantic Forest will do so in a single region-the Serra do Mar and Serra do Espinhaço. Most of the refugia we identified, however, were not in PAs, which may contain <6% of the total area of climate change refugia, leaving 129-237 species with no refugia inside the territorial limits of PAs of any kind. Our results reveal a dismal scenario for the level of refugia protection in some of the most biodiverse regions of the world. Nonetheless, because refugia tend to be in high-elevation, topographically complex, and remote areas, with lower anthropogenic pressure, formally protecting them may require a comparatively modest investment.


Identificación de refugios para la biodiversidad de Sudamérica ante el cambio climático Resumen Las estrategias de conservación basadas en refugios ofrecen efectividad a largo plazo y minimizan la incertidumbre sobre las estrategias de adaptación al cambio climático. Utilizamos modelos de distribución para identificar los refugios del cambio climático de 617 especies de mamíferos terrestres y cuantificar el papel de las áreas protegidas en la provisión de refugios en Sudamérica. Para esto, comparamos la distribución potencial de las especies en diferentes escenarios de cambio climático, destacando las regiones que probablemente conservarán las condiciones climáticas adecuadas para el año 2090, y exploramos la proporción de refugios dentro de las áreas protegidas. Los bosques tropicales húmedos de zonas de gran altitud y topografía compleja concentraron la mayor diversidad local de refugios de especies, aunque también hubo centros de refugio de importancia regional en otras localidades. Los bosques amazónicos andinos albergaron los refugios ante el cambio climático de más de la mitad del conjunto de especies continentales y para hasta 87 especies a escala local (celda cuadriculada de 17 × 17 km2 ). Las tierras altas del sur del Bosque Atlántico también incluyeron refugios megadiversos para hasta 76 especies por celda. Casi la mitad de las especies que pueden refugiarse en el Bosque Atlántico lo harán en una sola región: la Serra do Mar y la Serra do Espinhaço. Sin embargo, la mayoría de los refugios que identificamos no estaban en áreas protegidas, las cuales pueden contener <6% del área total de refugios del cambio climático, dejando entre 129 y 237 especies sin refugio dentro de los límites territoriales de las áreas protegidas de cualquier tipo. Nuestros resultados revelan un panorama desolador para el nivel de protección de los refugios en algunas de las regiones con mayor biodiversidad del mundo. No obstante, dado que los refugios suelen encontrarse en zonas remotas de gran altitud con topografía compleja y menor presión antropogénica, protegerlos formalmente puede requerir una inversión comparativamente modesta.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Florestas , Mamíferos , América do Sul , Ecossistema
2.
Ecol Lett ; 26(6): 869-882, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967645

RESUMO

Biodiversity loss not only implies the loss of species but also entails losses in other dimensions of biodiversity, such as functional, phylogenetic and interaction diversity. Yet, each of those facets of biodiversity may respond differently to extinctions. Here, we examine how extinction, driven by climate and land-use changes may affect those different facets of diversity by combining empirical data on anuran-prey interaction networks, species distribution modelling and extinction simulations in assemblages representing four Neotropical ecoregions. We found a mismatch in the response of functional, phylogenetic and interaction diversity to extinction. In spite of high network robustness to extinction, the effects on interaction diversity were stronger than those on phylogenetic and functional diversity, declining linearly with species loss. Although it is often assumed that interaction patterns are reflected by functional diversity, assessing species interactions may be necessary to understand how species loss translates into the loss of ecosystem functions.


Assuntos
Biodiversidade , Ecossistema , Animais , Filogenia , Clima , Anuros
3.
Proc Biol Sci ; 290(1990): 20221909, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629106

RESUMO

Linking local to regional ecological and evolutionary processes is key to understand the response of Earth's biodiversity to environmental changes. Here we integrate evolution and mutualistic coevolution in a model of metacommunity dynamics and use numerical simulations to understand how coevolution can shape species distribution and persistence in landscapes varying in space and time. Our simulations show that coevolution and species richness can synergistically shape distribution patterns by increasing colonization and reducing extinction of populations in metacommunities. Although conflicting selective pressures emerging from mutualisms may increase mismatches with the local environment and the rate of local extinctions, coevolution increases trait matching among mutualists at the landscape scale, counteracting local maladaptation and favouring colonization and range expansions. Our results show that by facilitating colonization, coevolution can also buffer the effects of environmental changes, preventing species extinctions and the collapse of metacommunities. Our findings reveal the mechanisms whereby coevolution can favour persistence under environmental changes and highlight that these positive effects are greater in more diverse systems that retain landscape connectivity.


Assuntos
Biodiversidade , Simbiose , Extinção Biológica , Fenótipo , Ecossistema
4.
PeerJ ; 10: e14276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312759

RESUMO

Background: Terrestrial biomes in South America are likely to experience a persistent increase in environmental temperature, possibly combined with moisture reduction due to climate change. In addition, natural fire ignition sources, such as lightning, can become more frequent under climate change scenarios since favourable environmental conditions are likely to occur more often. In this sense, changes in the frequency and magnitude of natural fires can impose novel stressors on different ecosystems according to their adaptation to fires. By focusing on Brazilian biomes, we use an innovative combination of techniques to quantify fire persistence and occurrence patterns over time and evaluate climate risk by considering key fire-related climatic characteristics. Then, we tested four major hypotheses considering the overall characteristics of fire-dependent, fire-independent, and fire-sensitive biomes concerning (1) fire persistence over time; (2) the relationship between climate and fire occurrence; (3) future predictions of climate change and its potential impacts on fire occurrence; and (4) climate risk faced by biomes. Methods: We performed a Detrended Fluctuation Analysis to test whether fires in Brazilian biomes are persistent over time. We considered four bioclimatic variables whose links to fire frequency and intensity are well-established to assess the relationship between climate and fire occurrence by confronting these climate predictors with a fire occurrence dataset through correlative models. To assess climate risk, we calculated the climate hazard, sensitivity, resilience, and vulnerability of Brazilian biomes, and then we multiplied the Biomes' vulnerability index by the hazards. Results: Our results indicate a persistent behaviour of fires in all Brazilian biomes at almost the same rates, which could represent human-induced patterns of fire persistence. We also corroborated our second hypothesis by showing that most fire-dependent biomes presented high thermal suitability to fire, while the fire-independent biome presented intermediate suitability and fire-sensitive biomes are the least suitable for fire occurrence. The third hypothesis was partially corroborated since fire-dependent and independent biomes are likely to increase their thermal suitability to fire, while fire-sensitive biomes are likely to present stable-to-decreasing thermal suitability in the future. Finally, our fourth hypothesis was partially corroborated since most fire-dependent biomes presented low climate risk, while the fire-independent biome presented a high risk and the fire-sensitive biomes presented opposite trends. In summary, while the patterns of fire persistence and fire occurrence over time are more likely to be related to human-induced fires, key drivers of burned areas are likely to be intensified across Brazilian biomes in the future, potentially increasing the magnitude of the fires and harming the biomes' integrity.


Assuntos
Ecossistema , Humanos , Brasil/epidemiologia , Temperatura , Fatores de Tempo
5.
Glob Chang Biol ; 28(11): 3683-3693, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35246902

RESUMO

Humans have reshaped the distribution of biodiversity across the globe, extirpating species from regions otherwise suitable and restricting populations to a subset of their original ranges. Here, we ask if anthropogenic range contractions since the Late Pleistocene led to an under-representation of the realized niches for megafauna, an emblematic group of taxa often targeted for restoration actions. Using reconstructions of past geographic distributions (i.e., natural ranges) for 146 extant terrestrial large-bodied (>44 kg) mammals, we estimate their climatic niches as if they had retained their original distributions and evaluate their observed niche dynamics. We found that range contractions led to a sizeable under-representation of the realized niches of several species (i.e., niche unfilling). For 29 species, more than 10% of the environmental space once seen in their natural ranges has been lost due to anthropogenic activity, with at least 12 species undergoing reductions of more than 50% of their realized niches. Eighteen species may now be confined to low-suitability locations, where fitness and abundance are likely diminished; we consider these taxa 'climatic refugees'. For those species, conservation strategies supported by current ranges risk being misguided if current, suboptimal habitats are considered baseline for future restoration actions. Because most climate-based biodiversity forecasts rely exclusively on current occurrence records, we went on to test the effect of neglecting historical information on estimates of species' potential distribution - as a proxy of sensitivity to climate change. We found that niche unfilling driven by past range contraction leads to an overestimation of sensitivity to future climatic change, resulting in 50% higher rates of global extinction, and underestimating the potential for megafauna conservation and restoration under future climate change. In conclusion, range contractions since the Late Pleistocene have also left imprints on megafauna realized climatic niches. Therefore, niche truncation driven by defaunation can directly affect climate and habitat-based conservation strategies.


Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Previsões , Humanos , Mamíferos
6.
Front Ecol Evol, v. 10, 1021812, out. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4722
7.
Cladistics ; 37(5): 571-585, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570934

RESUMO

Species distribution patterns are constrained by historical and ecological processes in space and time, but very often the species range sizes are geographical sampling biases resulting from unequal sampling effort. One of the most common definitions of endemism is based on the "congruence of distributional areas" criterion, when two or more species have the same distributional limits. By acknowledging that available data of marine meiobenthic species are prone to geographical sampling bias and that can affect the accuracy of the biogeographical signals, the present study combines analyses of inventory incompleteness and recognition of spatial congruence of Gastrotricha, Kinorhyncha, meiobenthic Annelida and Tardigrada in order to better understand the large-scale distribution of these organisms in coastal and shelf areas of the world. We used the marine bioregionalization framework for geographical operative units to quantify the inventory incompleteness effect (by modelling spatial predictions of species richness) and to recognize areas of endemism. Our models showed that the difference between observed and expected species richness in the Southern Hemisphere is much higher than in the Northern Hemisphere. Parsimony Analysis of Endemicity delimited 20 areas of endemism, most found in the Northern Hemisphere. Distribution patterns of meiobenthic species are shown to respond to events of geographical barriers and abiotic features, and their distribution is far from homogeneous throughout the world. Also, our data show that ecoregions with distinct biotas have at least some cohesion over evolutionary time. However, we found that inventory incompleteness may significantly affect the explanatory power of areas of endemism delimitation in both hemispheres. Yet, whereas future increases in sampling efforts are likely to change the spatial congruence ranges in the Southern Hemisphere, patterns for the Northern Hemisphere may prove to be relatively more resilient.


Assuntos
Geografia , Biologia Marinha , Viés de Seleção , Animais , Biodiversidade , Evolução Biológica , Ecossistema , Filogenia , Especificidade da Espécie
8.
An Acad Bras Cienc ; 92(4): e20201292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146238

RESUMO

Since the beginning of the COVID-19 pandemic, publications have highlighted the disproportionate impact of the COVID-19 pandemic on academic mothers, mostly focusing on the impact of social distancing and quarantine. A few months later, despite the lack of effective vaccines or therapeutics in sight, many economic activities are being resumed. Nurseries and schools are expected to be among the latest to reopen, which will amplify the impacts of the pandemic on academic mothers. In this letter, we unwrap the pandemic impacts on academic mothers and describe a set of specific short-, medium- and long-term policies that, if implemented, could reduce setbacks for gender equality during the pandemic and can help to level the playing field for academic mothers.


Assuntos
Infecções por Coronavirus , Mães , Pandemias , Pneumonia Viral , Betacoronavirus , Brasil , COVID-19 , Feminino , Humanos , SARS-CoV-2
9.
Glob Chang Biol ; 26(12): 7036-7044, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33006792

RESUMO

Humans have fragmented, reduced or altered the biodiversity in tropical forests around the world. Climate and land-use change act synergistically, increasing drought and fire frequencies, converting several tropical rainforests into derived savannas, a phenomenon known as "savannization." Yet, we lack a full understanding of the faunal changes in response to the transformation of plant communities. We argue that the composition of vertebrate assemblages in ecotone regions of forest-savanna transitions from South America will be increasingly replaced by open savanna species, a phenomenon we name "faunal savannization." We combined projections from ecological niche models, habitat filter masks and dispersal simulations to forecast the distribution of 349 species of forest- and savanna-dwelling mammal species across South America. We found that the distribution of savanna species is likely to increase by 11%-30% and spread over lowland Amazon and Atlantic forests. Conversely, forest-specialists are expected to lose nearly 50% of their suitable ranges and to move toward core forest zones, which may thus receive an influx of more than 60 species on the move. Our findings indicate that South American ecotonal faunas might experience high rates of occupancy turnover, in a process parallel to that already experienced by plants. Climate-driven migrations of fauna in human-dominated landscapes will likely interact with fire-induced changes in plant communities to reshape the biodiversity in tropical rainforests worldwide.


Assuntos
Árvores , Clima Tropical , Animais , Biodiversidade , Mudança Climática , Ecossistema , Florestas , Humanos , Floresta Úmida , América do Sul
12.
PLoS One ; 12(11): e0187770, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29107985

RESUMO

Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen's optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen's density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans.


Assuntos
Produtos Agrícolas/microbiologia , Fabaceae/microbiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , África , Brasil , América Central , Mudança Climática , Modelos Teóricos
13.
PLoS One ; 12(10): e0183785, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023503

RESUMO

BACKGROUND: Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. METHODS: We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. RESULTS: The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. CONCLUSIONS: From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.


Assuntos
Anfíbios/fisiologia , Aves/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Mamíferos/fisiologia , Modelos Biológicos , Animais , Biodiversidade , Incerteza
14.
J Anim Ecol ; 86(5): 1214-1223, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28656732

RESUMO

Niche conservatism, i.e. the retention of a species' fundamental niche through evolutionary time, is cornerstone for biological invasion assessments. The fact that species tend to maintain their original climate niche allows predictive maps of invasion risk to anticipate potential invadable areas. Unravelling the mechanisms driving niche shifts can shed light on the management of invasive species. Here, we assessed niche shifts in one of the world's worst invasive species: the wild boar Sus scrofa. We also predicted potential invadable areas based on an ensemble of three ecological niche modelling methods, and evaluated the performance of models calibrated with native vs. pooled (native plus invaded) species records. By disentangling the drivers of change on the exotic wild boar population's niches, we found strong evidence for niche conservatism during biological invasion. Ecological niche models calibrated with both native and pooled range records predicted convergent areas. Also, observed niche shifts are mostly explained by niche unfilling, i.e. there are unoccupied areas in the exotic range where climate is analogous to the native range. Niche unfilling is expected as result of recent colonization and ongoing dispersal, and was potentially stronger for the Neotropics, where a recent wave of introductions for pig-farming and game-hunting has led to high wild boar population growth rates. The invasive potential of wild boar in the Neotropics is probably higher than in other regions, which has profound management implications if we are to prevent their invasion into species-rich areas, such as Amazonia, coupled with expansion of African swine fever and possibly great economic losses. Although the originally Eurasian-wide distribution suggests a pre-adaptation to a wide array of climates, the wild boar world-wide invasion does not exhibit evidence of niche evolution. The invasive potential of the wild boar therefore probably lies on the reproductive, dietary and morphological characteristics of this species, coupled with behavioural thermoregulation.


Assuntos
Distribuição Animal , Regulação da Temperatura Corporal , Clima , Espécies Introduzidas , Sus scrofa , Animais , Mudança Climática , Dieta , Ecossistema , Reprodução , Suínos
15.
PLoS One ; 11(11): e0165073, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829036

RESUMO

Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.


Assuntos
Biodiversidade , Mudança Climática , Clima , Mamíferos/fisiologia , Aclimatação , Animais , Brasil , Conservação dos Recursos Naturais/métodos , Geografia , Mamíferos/classificação , Modelos Teóricos , Medição de Risco , Fatores de Risco , Estações do Ano , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...